Skip to main content

Why VLF testing is preferred than conventional DC testing in Diagnostic field?




Testing of cable with conventional method is "DC hipod" testing.A considerable rise in premature failures was observed when polymeric cables (XLPE, EPR, etc.) were introduced into the electric grid and readily being tested with DC.
This failure with DC hi-Pot testing is cause of trapped charge within the defects of Insulation due to intense charge migration via Unidirectional DC field
When DC test completed and AC supply applied to the cable this charge lead to rapid generation of electrical tree and subsequent failure.

VLF testing benefits

  1. Potential failures should happen during the actual test so that repairs can be made immediately because test time of VLF testing is more about 15 min to 60 min.
  2. Lower power and current requirement for testing which significantly reduced size/weight to allow for a very portable high voltage tester.
Both benefits describes briefly as below,
  1. Under DC test, test object remain less time under voltage stress than VLF test.This allow the breakdown of the test specimen in VLF test which allow to repair the specimen before it is in service.Because Failures in the cable during service result in higher costs for the utilities and are a nuisance for the power consumer.Second ,here no issue of trapped charge like DC test because of we applied C test voltage which reduce the considerable reduce in premature failures occurred during DC test
  2. Power for capacive circuits P = 2πfCV2 
where f = applied test frequency, C = capacitance of the test object, and V = applied test voltage.
From the equation its seen that decreasing the applied test frequency will decrease the power required to apply a voltage, and since P = IV (where I = current), the amount of current required to apply a voltage is also lowered.
Insted of applying power frequency 50Hz we apply 0.01 Hz to the test specimen it clearly shows that we required 500 times less power.This less requirement of power make the size of test kit compact and portable.














Comments

Popular posts from this blog

Sweep Frequency Response Analysis Test | SFRA Test of Transformer

What is SFRA Test? Frequency response analysis (often referred to as FRA or SFRA ) is a powerful and sensitive method for testing the mechanical integrity of transformer cores, windings, and press frames, in power transformers. The winding of transformer may be subjected to mechanical stresses during transportation, heavy short circuit faults, transient switching impulses and lightening impulses etc. These mechanical stresses may cause displacement of transformer windings from their position and may also cause deformation of these windings. SFRA Test can detect, winding deformation – axial & radial, like hoop buckling, tilting, spiraling displacements between high and low voltage windings partial winding collapse shorted or open turns faulty grounding of core or screens core movement broken clamping structures problematic internal connections How SFRA works? Transformers consist of multiple complex networks of capacitances and resistors that can generate a unique ...

How to calculate restraining quantity in Differential relay during testing

Here I'm providing the equation for calculate restraining quantity in differential relay. %restrain= I diff setting + (I1 * CT1 error) + (I2 * CT2 error) I diff setting =Differential setting in relay(ex. 0.2Amp) I1 =Current injected in CT for 1 end relay for testing I2 =Current injected in CT for 2 end relay for testing Ct erro r=5%(if injected current <1) OR 15%(if Injected current >=1) During testing we found Ij1=Ij2, because generally same current is seen during fault bay both end relay Case-1 Injected current=1Amp,I differ setting=0.2( Assume CT error 15% when Injected current >=1) %restrain= I diff setting + (I1 * CT1 error) + (I2 * CT2 error)                    =0.2 +(1 * 0.15) + (1 * 0.15)                    =0.50   %restrain =50%(around) Cas...