Skip to main content

Dielectric frequency response (DFR) analysis for moisture measurement in transformer


The dielectric response is a unique characteristic of the particular insulation system. The increased moisture content of the insulation results in a changed dielectric model and, consequently, a changed dielectric response. By measuring the dielectric response of the equipment in a wide frequency range, the moisture content can be assessed and the insulation condition diagnosed.

The test connections and modes are the same as used in a traditional transformer insulation power-factor test with the difference being the test is performed at a low voltage, up to 200 Vp-p, and the test is performed at frequencies from 1 kHz to 1μHz

In this Figure the response curve for oil-impregnated paper. This curve shows a frequency vs. dissipation factor relationship.
  • The higher frequencies display the moisture and aging of the cellulose.
  • Moving from left to right the frequency is reduced and the oil conductivity properties are displayed. In the millihertz range, the insulation geometry comes into play.
  • As the moisture properties of the cellulose change so does the shape of the curve.
The most common techniques used to measure this response are frequency domain spectroscopy (FDS) and polarization and depolarization current (PDC) methods. Using the frequency domain spectroscopy, the dissipation factor of the insulation system under test is measured by frequency sweep. The FDS allows fast measurements at high frequencies but requires long measurement times at frequencies down to 0.1 millihertz.
After the test is completed the results must be compared to a standard to determine the actual moisture content. IEC 60422 and IEEE 62-1995 have defined moisture classifications.

Comments

Popular posts from this blog

Sweep Frequency Response Analysis Test | SFRA Test of Transformer

What is SFRA Test? Frequency response analysis (often referred to as FRA or SFRA ) is a powerful and sensitive method for testing the mechanical integrity of transformer cores, windings, and press frames, in power transformers. The winding of transformer may be subjected to mechanical stresses during transportation, heavy short circuit faults, transient switching impulses and lightening impulses etc. These mechanical stresses may cause displacement of transformer windings from their position and may also cause deformation of these windings. SFRA Test can detect, winding deformation – axial & radial, like hoop buckling, tilting, spiraling displacements between high and low voltage windings partial winding collapse shorted or open turns faulty grounding of core or screens core movement broken clamping structures problematic internal connections How SFRA works? Transformers consist of multiple complex networks of capacitances and resistors that can generate a unique ...

What is Arc Flash Studies?How it is carried out?

In order to identify the specific arc flash hazard at a given piece of equipment within a  given facility, an arc flash study must be performed. Outcome of Arc flash Study? Identify the Arc Flash Protection Boundary (this is the closest approach allowed before PPE must be worn).  arc flash equipment labeling Fault current and coordination analysis  recommendations for PPEs Arc Flash Incident Energy Mitigation Strategies How Arc flash Study carried out? There are several software packages available, similarly to short circuit study and coordination study software packages, to facilitate this analysis by a qualified professional electrical engineer.  Following seven steps to be carried out to done complete Arc flash study of the facility.      1.Gathering all as built documentation of the facility The starting point of study is to accumulate  all documentation like Electrical and earthing drawing etc. If...